翻訳と辞書
Words near each other
・ Hilbert curve scheduling
・ Hilbert dimension
・ Hilbert field
・ Hilbert geometry
・ Hilbert High School
・ Hilbert Leigh Bair
・ Hilbert manifold
・ Hilbert matrix
・ Hilbert metric
・ Hilbert modular form
・ Hilbert modular surface
・ Hilbert number
・ Hilbert operator
・ Hilbert Philip Zarky
・ Hilbert plane
Hilbert projection theorem
・ Hilbert R-tree
・ Hilbert scheme
・ Hilbert Schenck
・ Hilbert series and Hilbert polynomial
・ Hilbert Shirey
・ Hilbert space
・ Hilbert spectral analysis
・ Hilbert spectroscopy
・ Hilbert spectrum
・ Hilbert symbol
・ Hilbert system
・ Hilbert transform
・ Hilbert van der Duim
・ Hilbert Van Dijk


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert projection theorem : ウィキペディア英語版
Hilbert projection theorem
In mathematics, the Hilbert projection theorem is a famous result of convex analysis that says that for every point x in a Hilbert space H and every nonempty closed convex C \subset H, there exists a unique point y \in C for which \lVert x - y \rVert is minimized over C.
This is, in particular, true for any closed subspace M of C. In that case, a necessary and sufficient condition for y is that the vector x-y be orthogonal to M.
==Proof==
:
* ''Let us show the existence of ''y'':''
Let δ be the distance between ''x'' and ''C'', (''y''''n'') a sequence in ''C'' such that the distance squared between ''x'' and ''y''''n'' is below or equal to δ2 + 1/''n''. Let ''n'' and ''m'' be two integers, then the following equalities are true:
: \| y_n - y_m \|^2 = \|y_n -x\|^2 + \|y_m -x\|^2 - 2 \langle y_n - x \, , \, y_m - x\rangle
and
: 4 \left\| \frac2 -x \right\|^2 = \|y_n -x\|^2 + \|y_m -x\|^2 + 2 \langle y_n - x \, , \, y_m - x\rangle
We have therefore:
: \| y_n - y_m \|^2 = 2\|y_n -x\|^2 + 2\|y_m -x\|^2 - 4\left\| \frac2 -x \right\|^2
By giving an upper bound to the first two terms of the equality and by noticing that the middle of ''y''''n'' and ''y''''m'' belong to ''C'' and has therefore a distance greater than or equal to ''δ'' from ''x'', one gets :
: \| y_n - y_m \|^2 \; \le \; 2\left(\delta^2 + \frac 1n\right) + 2\left(\delta^2 + \frac 1m\right) - 4\delta^2=2\left( \frac 1n + \frac 1m\right)
The last inequality proves that (''y''''n'') is a Cauchy sequence. Since ''C'' is complete, the sequence is therefore convergent to a point ''y'' in ''C'', whose distance from ''x'' is minimal.
:
* ''Let us show the uniqueness of ''y'' :''
Let ''y''1 and ''y''2 be two minimizers. Then:
: \| y_2 - y_1 \|^2 = 2\|y_1 -x\|^2 + 2\|y_2 -x\|^2 - 4\left\| \frac2 -x \right\|^2
Since \frac2 belongs to ''C'', we have \left\| \frac2 -x \right\|^2\geq \delta^2 and therefore
: \| y_2 - y_1 \|^2 \leq 2\delta^2 + 2\delta^2 - 4\delta^2=0 \,
Hence y_1=y_2, which proves uniqueness.
:
* ''Let us show the equivalent condition on'' ''y'' ''when'' ''C'' = ''M'' ''is a closed subspace.''
The condition is sufficient:
Let z\in M such that \langle z-x, a \rangle=0 for all a\in M.
\|x-a\|^2=\|z-x\|^2+\|a-z\|^2+2\langle z-x, a-z \rangle=\|z-x\|^2+\|a-z\|^2 which proves that z is a minimizer.
The condition is necessary:
Let y\in M be the minimizer. Let a\in M and t\in\mathbb R.
: \|(y+t a)-x\|^2-\|y-x\|^2=2t\langle y-x,a\rangle+t^2 \|a\|^2=2t\langle y-x,a\rangle+O(t^2)
is always non-negative. Therefore, \langle y-x,a\rangle=0.
QED

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert projection theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.